Tag Archives: Kverkfjöll

Askja and Herðubreið, The Start of Our Exploration of the Northern Volcanic Zone, Iceland

Good Morning!

As the new volcano at Geldingadalur continues to grow, opening and closing new fissures, we have returned to our tour of Iceland.  We have now reached the Northern Volcanic Zone, where the plate boundary heads northwards from Kverkfjöll to meet the Tjörnes Fracture Zone.   Active volcanoes in the zone are Kverkfjöll, Askja, Fremrinámur, Heiðarsporðar, Krafla and Þeistareykir; Herðubreið, itself, is Pleistocene palagonite table-mountain.

We are starting with the currently most seismically active volcanoes, Askja and Herðubreið, located where the Eastern Volcanic Zone meets the Northern Volcanic Zone, north of the Vatnajökull ice-cap. The mantle plume, itself, is thought to be located to the north west of the Vatnajökull ice-cap.

Askja

Fig 1: Combined images of Askja, cropped from photos by Michael Ryan, 1984 (U.S. Geological Survey): Askja Shield (top) and Askja Caldera (bottom) from GVP

The Askja volcanic system comprises a 1,516 m high central volcano and 190 km long fissure system, the central volcano being the Dyngjufjöll massif. It has three nested calderas, the latest of which formed in a rhyolitic eruption in 1875.  The central volcano, itself, is made up of Pleistocene glacio-volcanic tuffs, hyaloclastites, pillow basalts and intercalated sub aerial lava and capped by Holocene sub aerial lavas and pumice.  The fissure system, itself, extends from beneath the Vatnajokull ice-cap to the north coast of Iceland and includes small shield volcanoes.

This volcanic system does not erupt frequently; GVP records 14 Holocene eruptions which range from VEI 0 to VEI 5, the VEI 5s occurred in c. 8910 BC and 1875.  Askja’s lava types are tholeiitic basalt / picro-basalt and rhyolite.  Her main eruption types are effusive basalt with occasion explosive basalt or rhyolite.  The 1875 eruption created a 4.5-km-wide caldera which is now filled by Öskjuvatn lake. The most recent eruption in 1961 was a VEI 2 effusive basalt one.

Fig 2:  The Askja volcanic system from Icelandic Volcanoes . The boundary of the fissure system is delineated with a dotted line, the central volcano with a black line and the calderas with bold lines.  The three letter abbreviations are other volcanic systems in the area: BAR is Barðarbunga, KVE is Kverkfjöll, SNF is Snæfell, ASK is Askja, FRE is Fremrinámur, HEI is Heiðarsporðar, KRA is Krafla and TEY is Þeistareykir.  The author has added the names Herðubreið and Herðubreiðartögl.

The Askja Fires, 1874 to 1929

Askja was little known before the Askja Fires.  The area is sparsely inhabited, sited in lava fields and ash deserts.   The Fires occurred during a volcano-tectonic episode between 1874 to 1929.

A steam column rising from the central volcano in February 1874 was the first observed sign that the volcano was active. Northern Iceland was rocked by many large earthquakes in December 1874.  Steam and ash were seen in early January 1875 and light ashfall was noted south of Öxarfjörður.  By 15 February 1875, 10m subsidence had occurred in the main caldera along with the formation of a crater erupting mud.  A basalt lava flow at Holuhraun to the south of Askja occurred around this time. 

On 18 February 1875, a fissure eruption started on the Sveinagjá fissure north of the volcano; this generated 0.2 to 0.3km3 of basaltic lava over the course of several months.

On 29 March 1975, the Plinian eruption at the central volcano started in earnest.  The initial output was a wet and sticky tephra.  Shortly after 05:30, pumice was erupted, reaching as far as Scandinavia; this phase lasted until the following day. The Víti crater was formed later in a short hydro-magmatic episode.  The caldera, itself, formed over a period of 40 to 50 years, is now filled by Öskjuvatn lake.  As the volume of the new caldera is greater than the calculated erupted volume of lava and ash, it is thought that the excess lava is stored in the fissure system.

In 1929 to 1930, five eruptions occurred on ring faults around the Öskjuvatn caldera, with a 6 km long fissure eruption occurring on the southern side of the volcano that created the Þorvaldsraun lava.

The 1875 eruption is not the first time Askja has erupted rhyolite. Two other instances have been occurred: the c.10ka Skolli eruption and one around 2.1ka; these deposited thick layers of tephra and ash from the latter reached as far afield as Scotland and Sweden.

Holuhraun, which should be familiar to those interested in volcanology, is the area where a fissure eruption occurred in 2014.  This time the central volcano responsible was Barðarbunga.  At the time there was some concern at the time that the activity in Holuhruan would extend to Askja, triggering a rhyolitic eruption.  Fortunately, that did not happen.

Herðubreið

Fig 3: Image of Herðubreið, cropped from a photo by Icemuon, published under CC BY-SA 3.0

 Herðubreið is a 1,682m high Pleistocene palagonite table-mountain (tuya) made up of pillow lavas, hyaloclastite, capped by a 300m thick lava shield. Herðubreiðartögl, a small ridge extending from the south of Herðubreið, may be part of the same system.  Although Herðubreið is close to the Askja and Kverkfjöll volcanic systems, in the absence of any post glacial activity it not known if it belongs to either system.  We are including the volcano here as it is difficult to allocate the seismic activity in the area to each volcano without more local knowledge.

Herðubreið has been studied as an indicator of climate change during the last glacial periods. Werner et al, (1996) proposed that Herðubreið developed in stages from initial sub-aerial, sub-aqueous, subglacial to sub-aerial.  The first sub-aerial activity occurred during an interglacial, creating an olivine tholeiitic shield volcano in the vicinity of Herðubreiðartögl.  A lull in volcanic activity coincided with the onset of the last ice-age. Activity resumed with the deposition of olivine tholeiites, followed by hyaloclastites in a lake environment until the volcano breached the lake surface to produce subaerial lavas. The tuya, itself, was formed during the last glacial maximum when the volcano erupted pillow lavas under hyaloclastite deposits in the ice-cap; these were later topped by subaerial lavas when the volcano broke through the ice-sheet.  At the end of the last ice-age, activity at Herðubreið had ceased, however, Herðubreiðartögl produced some later olivine tholeittic lava flows and ash deposits.

Recent Seismicity

We plotted the area between 64.95°N,17.2°W and 65.3°N,16.0°W, a total of 45,899 earthquakes.  As you can see from Fig 4, the area is very active (although perhaps we should not have used green dots in retrospect– Askja looks very unwell as a result).

Fig 4: Geoscatter plot by the author of earthquakes between 64.95°N,17.2°W and 65.3°N,16.0°W for the period 31.12.2007 to 31.03.2021. Green dots denote earthquake epicentres; red stars denote those of 3.0 or more M. Blue triangles denote volcanoes. © Copyright remains with the author; all rights reserved, 2021.

The latitude v longitude scatter plot shows that activity follows a NE-SW pattern around Herðubreið, with a swarm to the south east; activity around Askja is focussed on the SE section of the caldera with some further east.  The plots are data-heavy so we have broken these down by year.

Fig 5: Lat v Lon scatter plot by the author of earthquakes between 64.95°N,17.2°W and 65.3°N,16.0°W for the period 31.12.2007 to 31.03.2021. Colours denote year of occurrence. Blue triangles denote volcanoes. © Copyright remains with the author; all rights reserved, 2021.
Fig 6: Depth v Lon scatter plot by the author of earthquakes between 64.95°N,17.2°W and 65.3°N,16.0°W for the period 31.12.2007 to 31.03.2021. Colours denote year of occurrence. Blue triangles denote volcanoes. © Copyright remains with the author; all rights reserved, 2021.

The years with most seismic activity in the sequence are: 2007, 2008, 2014 and 2019. 

Fig 7: Earthquakes in the plotted area by year by the author.  The years highlighted in green have above average seismicity. © Copyright remains with the author; all rights reserved, 2021.

In 2007 and 2008, there was a swarm that started in Upptyppingar and progressed to Álftadalsdyngja; this is thought to be due to magma movement. 2014 is the same year as the Barðarbunga eruption at Holuhraun; perhaps some of the seismicity is the result of the crust accommodating magma movement in the region, although the swarm here preceded the swarms at Barðarbunga.   In 2019, there was a swarm to the east of the Askja caldera.

The earthquake density plots and depth v longitude plots for these years are set out in Figs 8 to 11 below.

Fig 8: Earthquake density plot and depth v lon scatter plot by the author of earthquakes between 64.95°N,17.2°W and 65.3°N,16.0°W for 2007. Colours denote year of occurrence. Blue triangles denote volcanoes. © Copyright remains with the author; all rights reserved, 2021.
Fig 9: Earthquake density plot and depth v lon scatter plot by the author of earthquakes between 64.95°N,17.2°W and 65.3°N,16.0°W for 2008. Colours denote year of occurrence. Blue triangles denote volcanoes. © Copyright remains with the author; all rights reserved, 2021.
Fig 10: Earthquake density plot and depth v lon scatter plot by the author of earthquakes between 64.95°N,17.2°W and 65.3°N,16.0°W for 2014. Colours denote year of occurrence. Blue triangles denote volcanoes. © Copyright remains with the author; all rights reserved, 2021.
Fig 11: Earthquake density plot and depth v lon scatter plot by the author of earthquakes between 64.95°N,17.2°W and 65.3°N,16.0°W for 2019. Colours denote year of occurrence. Blue triangles denote volcanoes. © Copyright remains with the author; all rights reserved, 2021.
Fig 12: Video of earthquake density plots by the author for the period 2006 to 2021(3m) for the area 4.95°N,17.2°W and 65.3°N,16.0°W . © Copyright remains with the author; all rights reserved, 2021.

Let’s see what the scientists have said. Greenfield et al (2016) have noted from seismic studies that there is considerable melt storage and transportation (movement) under the lower crust in the region (which may or may not be typical of Icelandic volcanoes – more study would be needed); there is likely to be a magma intrusive complex in the shallow crust round Askja; and, the activity round Herðubreið is caused by fracturing in the region.

The region is well monitored due to the risk of another rhyolitic eruption from Askja; this time around one may cause some disruption to aviation and communication systems, by how much would depend on the size and length of the eruption.   In the light of the reawakening of Fagradalsfjall on the Reykjanes Peninsula, perhaps the Pleistocene volcanoes should be added to the watch list, although the monitoring of Holocene volcanoes is likely to pick up unusual activity. 

La Soufrière St. Vincent

We have not forgotten La Soufrière St. Vincent; our thoughts are still with the islanders.  We will do a fuller update soon. In the meantime, the volcano is still erupting and a new lava dome is forming in the crater.  The island has lost up to 50% of its GDP.  More aid is now reaching the island.  For updates, we use News 784 (link below).

Barbados continues to clear up the volcanic ash; this is putting strain on local water supplies. For updates, we use Nation News Barbados.

The Armchair Volcanologist

© Copyright remains with the author; all rights reserved, 2021.

Sources and Further Reading:

R. Werner, H. U. Schmincke, G. Sigvaldason ,“A new model for the evolution of table mountains: volcanological and petrological evidence from Herðubreið and Herðubreiðartögl volcanoes (Iceland)”, Geologische Rundschau 85, Article number: 390 (1996). https://link.springer.com/article/10.1007/BF02422244

T. Greenfield, R. S. White, S. Roecker, “The magmatic plumbing system of the Askja central volcano, Iceland, as imaged by seismic tomography”, Journal of Geophysical Reseach: Solid Earth, AGU Publications https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JB013163

Thor Thordarson (Faculty of Earth Sciences, University of Iceland) and Al Margaret Hartley (University of Manchester (November 2019). Askja. In: Oladottir, B., Larsen, G. & Guðmundsson, M. T. Catalogue of Icelandic Volcanoes. IMO, UI and CPD-NCIP. Retrieved from http://icelandicvolcanoes.is/?volcano=ASK

“Classic Geology in Europe 3: Iceland”, Thor Thordarson & Armann Hoskuldsson, Terra Publishing, Third Edition, 2009.

The Smithsonian Institution’s Global Volcanism Program (GVP): https://volcano.si.edu/

Earthquake raw data: IMO:  https://en.vedur.is/

For updates on La Soufriere St Vincent:

News 784: https://news784.com/

Nation News Barbados: https://www.nationnews.com/

For updates on the new volcano at Geldingadalur:

Icelandic Met Office: https://en.vedur.is/ (English site)

Icelandic Met Office: https:// vedur.is/ (Icelandic site)

Reykjavik Grapevine: https://grapevine.is/

Department of Civil Protection and Emergency Management | Almannavarnir

Grímsvötn – Grumbling Quietly

Good Afternoon!

While browsing IMO’s website  a few days ago, I saw that signs have been detected that Grímsvötn is getting ready for another eruption, IMO ; a team of scientists noted large sulphur dioxide emissions near the south west caldera rim, indicating that magma is close to the surface. At the time of writing, the alert level for Grímsvötn remains at green.

Grímsvötn is Iceland’s most active volcano, erupting every 10 years and last erupting in 2011 with a VEI 4. 

Fig 1 Grimsvotn 2011 eruption.  Photographer: Sigurjónsson,O.  Grímsvötn (GRV): photo 2 of 14.  Retrieved from Icelandic Volcanoes: http://icelandicvolcanos.is/?volcano=GRV

Geological Setting

Grímsvötn is one of six active volcanoes under the Vatnajökull ice cap: Bárðarbunga, Kverkfjöll, Grímsvötn, Esufjöll, Þórðarhyrna, Öræfajökull.  Apart from Þórðarhyrna (THO in the map below), the other volcanoes are different volcanic systems.

The Vatnajökull volcanoes are part of the Eastern Volcanic Zone in Iceland.  Volcanism here is caused by rifting and extension from the separation of the North American and Eurasian Plates.  As noted in an earlier post, the Eastern Volcanic Zone accommodates 40 to 100% of the separation.

Our description of the Grímsvötn volcanic system is largely based on Magnús T. Guðmundsson and Guðrún Larsen’s description in Icelandic Volcanoes (ref. Sources below for the full accreditation).

The Grímsvötn volcanic system

The Grímsvötn volcanic system, itself, is made up of two central volcanos and fissure swarms.  It is partly covered by ice.

Fig 2 The Grímsvötn volcanic system showing craters, central volcanoes and fissure swarms.  Retrieved from Icelandic Volcanoes (see Sources below for full accreditation).

The Central Volcanoes

The Grímsvötn central volcano is a 1722m high, 15-16km diameter caldera complex covered by the Vatnajökull ice-cap, with ice depths of 100m to 700m; she has an 8km by 10km ice-filled caldera.  Grímsfall (GFUM) is the highest point on the caldera rim. There is a subglacial lake in the caldera under a 200 – 300m ice shelf with an associated geothermal area. The lake has been the source of many jökulhlaups.

The Þórðarhyrna central volcano, also subglacial, is a 1650 high with a 15 km diameter, connected to Grímsvötn by a subglacial ridge.  The volcano, itself, has a small intrusive complex but does not appear to have a large magma reservoir. There is a geothermal area near Pálsfjall.

Ice cover has restricted study of the volcanoes.  However, Grímsvötn has been around for long enough to develop a caldera – possibly more than 100,000 years.

Grímsvötn’s lava types are tholeiitic basalt with basaltic andesite and dacite / rhyolitic outcrops in the Þórðarhyrna central volcano.  The presence of a shallow magma reservoir is inferred from the geothermal field in the caldera.  The 2011 eruption of Grímsvötn produced 0.8km3 basaltic tephra.

Þórðarhyrna is less active than her neighbour; the last eruption occurred in 1903 with a VEI 4.  It is possible that she had a second eruption in 1753, resulting in jökulhlaups.  Again, ice cover has limited geological study.  There is little seismic activity near Þórðarhyrna. 

The Fissure Swarms

The fissure swarm is about 100 km long and 18 km wide.  Rifting is believed to occur along the entire swarm.   The northern end of the fissure swarm is covered by the Vatnajökull ice-cap; the southern 80km is ice-free.  Subglacial ridges characterise the northern end of the fissure, but not the ice-free southern end where crater rows delineate the fissure, including the Laki.

Three known subglacial eruptions have occurred since 1867 at Gjálp 10km to 15km north of Grímsvötn, itself.  The eruptive products include subglacial ridges and some airborne tephra.  The 1996 eruption produced basaltic andesite. 

Four effusive eruptions have been identified in the ice-free section of the fissure swarm southwest of Grímsvötn in the last 8,000 years; lava volumes have been between 1 km3 to 14 km3 with up to 0.7km3 of tephra.  The largest fissure eruption was the Laki eruption in 1783 to 1784.  No eruptions have been identified for the ice-covered section of the fissure swarm.

The Laki Fissure Eruption 1783 -1784

This eruption was well documented at the time; the Reverend Jón Steingrímsson’s 1788 account in “A complete description of the Síða Fires” gives a detailed eye-witness account. 

The 1783 eruption occurred on 27km long fissure and lasted from 8 June 1783 to 7 February 1784.  The early phase consisted of a series of ten or more explosive tephra events, each followed by effusive lava flows.  Grímsvötn, itself, erupted in July 1783 to May 1785 causing ash fall and jökulhlaups.

The Laki eruption was pre-empted by earthquakes of increasing intensity from mid-May to 8 June 1783 when a large ash cloud and ash fall appeared, followed by lava columns over 1km high from new fissure to the north.  Volcanic gases filtered out sunlight, making the Sun appear red.  Accompanying rainfall was acidic, irritating people’s eyes and skin.  Lava flows filled river gorges, overflowing to cover surrounding farmland.  During the eruption, Mount Laki was destroyed; I am not sure how big she was and how much her destruction contributed to the vast tephra output.

The eruption is rated a VEI4, having produced 0.7km3 of tephra which covered more than 8,000 km2, and 14 km3 of lava. Volcanic gases, including fluorine, killed more than half of the livestock and the “Haze Famine” killed 20% of the Icelandic population.  Further afield, 100 million tonnes of sulphur dioxide, having reached the jet stream, spread acidic sulphate aerosols round the Northern Hemisphere, damaged vegetation and crops in Europe and Alaska, caused severe winters and annual cooling of around 1.3°C that lasted for two to three years.

Fig 3: Laki Crater Row: Photographer: Sigurðsson, O.  Grímsvötn (GRV): photo 1 of 14.  Retrieved from Retrieved from Icelandic Volcanoes: http://icelandicvolcanos.is/?volcano=GRV

According to GVP, the Grímsvötn volcanic system has had 86 Holocene eruptions ranging from VEI 0 to VEI 6.  The VEI 6 occurred around 10200 BP and is the thought to be the source of the Saksunarvatn Tephra, a basaltic tephra which covered an area of 2 million km2 around the North Atlantic.  The Saksunarvatn Tephra, like the Vedde Ash from Hekla, is a geological time marker, although radiocarbon dating of the Saksunarvatn Tephra shows that it may have come from seven eruptive events over a 500 year period from 10400 BP to 9900 BP

Grímsvötn’s most recent eruptions from 1996 to 2011 range from VEI 3 to VEI 4. They were preceded by a small increase in seismicity and small earthquake swarms, except for the 1996 Gjálp eruption.  The 1996 eruption was preceded by a 5.4 earthquake on Barðabunga’s northern caldera rim,  swarms over a two day period at Barðarbunga’s north and northwest caldera rims and at Grimsvotn’s southern caldera rim, followed by a swarm from the north Bardarbunga caldera rim that migrated to Gjálp.

Recent Seismicity

So, what does our earthquake data set tell us about the likelihood of an eruption at Grímsvötn?  The answer is a disappointing “not a lot”.   We can see that Grímsvötn has a fairly steady stream of earthquakes but no obvious swarms.  However, given the proximity of Grímsvötn to other volcanoes, we may have attributed some of Grímsvötn’s activity to another volcano in error.  Plots are shown below, including one for Vatnajökull which shows the problem.

Fig 4: Earthquake plots by the author of seismic activity in the Vatnajökull region, Iceland, from 1 January 2016 to 14 June 2020. Green dots denote earthquake below 2M, yellow circles earthquakes between 3M and 3M and red stars earthquakes over 3M. © Copyright remains with the author; all rights reserved, 2020.

The earthquake plots of the Vatnajökull region show the SW-NE trending fissure swarms and also a SE-NW trending line of earthquakes.  The head of the mantle plume is considered to be under the Vatnajökull ice-cap; perhaps we are seeing its influence on the plate junction?  We can also see the proximity of Grímsvötn to Bárðarbunga.

The Grímsvötn system, with 3,326 earthquakes, is not the most seismically active volcano; activity is overshadowed by seismic activity at Bárðarbunga (5,464 earthquakes), Askja and Herðubreið (a combined 15,645 earthquakes) and Öræfajökull (4,770 earthquakes).  The 2014 eruption of Holuhraun was both preceded and accompanied by intense seismic activity at Bárðarbunga, notably near the edges of the caldera, and deflation at Bárðarbunga.  Since the eruption, Bárðarbunga has started to re-inflate. Our data set starts a year or more after the end of that eruption.

Looking more closely at Grímsvötn we see that earthquake activity is focused on the south east of the caldera and at an E-W trending fissure to the north east of the volcano.  The E-W fissure is parallel to similar lines of activity further north at Bárðarbunga’s caldera.  We also picked up some activity at Þórðarhyrna.

Fig 5: Geo-scatter and scatter earthquake plots by the author of seismic activity in the Grímsvötn region, Iceland, from 1 January 2016 to 14 June 2020. Green dots denote earthquake below 2M, yellow circles earthquakes between 3M and 3M and red stars earthquakes over 3M; black triangles are GPS stations and orange triangles, volcanic centres. © Copyright remains with the author; all rights reserved, 2020.
Fig 6: Scatter earthquake plots by the author of seismic activity in the Grímsvötn region, Iceland, from 1 January 2016 to 14 June 2020. Green dots denote earthquake below 2M, yellow circles earthquakes between 3M and 3M and red stars earthquakes over 3M; black triangles are GPS stations and orange triangles, volcanic centres. © Copyright remains with the author; all rights reserved, 2020

The earthquakes are telling only part of the story.  Grímsvötn has had a steady stream of earthquake activity during the period, but without the SO2 measurements from scientists, we would not be certain that magma, itself, was near the surface.

For updates on Grímsvötn, please visit IMO’s website (details below).

The Armchair Volcanologist

22 June 2020

Sources and Further Reading

“Grímsvötn”, Magnús T. Guðmundsson and Guðrún Larsen (Institute of Earth Sciences – Nordvulk, University of Iceland) In: Oladottir, B., Larsen, G. & Guðmundsson, M.T., Catalogue of Icelandic Volcanoes. IMO, UI and CPD-NCIP. Retrieved from Icelandic Volcanoes: http://icelandicvolcanos.is/?volcano=GRV

“Þórðarhyrna”, Magnús T. Guðmundsson and Guðrún Larsen (Institute of Earth Sciences – Nordvulk, University of Iceland) In: Oladottir, B., Larsen, G. & Guðmundsson, M.T., Catalogue of Icelandic Volcanoes. IMO, UI and CPD-NCIP. Retrieved from Icelandic Volcanoes: http://icelandicvolcanos.is/?volcano=THO

Fig 2: Map: After Guðmundsson and Miller (1997), Guðmundsson et al (2013a), Jóhannesson and Sæmundsson (1998a), Jóhannesson et al (1990). Base data, Iceland Geo Survey, IMO, NLSI | Base map: IMO.  In: Oladottir, B., Larsen, G. & Guðmundsson, M.T., Catalogue of Icelandic Volcanoes. IMO, UI and CPD-NCIP. Retrieved from Icelandic Volcanoes: http://icelandicvolcanos.is/?volcano=GRV

Smithsonian Institution Natural History Museum Global Volcanism Program (GVP): https://volcano.si.edu

Earthquake data: Icelandic Meteorology Office: IMO https://en.vedur.is/earthquakes-and-volcanism/earthquakes

Plots are the author’s own work.

© Copyright remains with the author; all rights reserved, 2020