While we are waiting to see if there is any volcanic activity at Grímsvötn or her neighbours, let’s take a look at how the current seismic activity in Iceland compares to previous years.
Our database, comprised of earthquake data downloaded from IMO (see Sources below), now goes back to 29 December 2008 and extends to 23 October 2020, although we may reupload the last week soon because IMO may have been in the process of updating the record when we downloaded the data.
From our graph, we can see that the total number of earthquakes was up in 2010, 2014, 2017 and 2020. In 2010, Eyjafjallajökull erupted, in 2014, Barðarbunga erupted at the Holuhraun fissure; in 2017, there was no subaerial volcanic activity, although Katla may have had some subglacial activity, and, in 2020, there is rifting both in the Reykjanes Peninsula and Tjörnes Fracture Zone but we have yet to see what, if any, volcanic activity emerges. Interestingly, the 2011 eruption of Grímsvötn did not push the total earthquakes up in 2011.
Let’s take a look at activity by region. Here we look at the four main volcanic regions: the Tjörnes Fracture Zone, Vatnajökull, Myrdalsjökull and the Reykjanes Peninsula, where there is most seismic activity.
Fig 2: Iceland Total Earthquakes by Region and Yearby the author, using data downloaded from IMO (see Sources below). Note: not all regions
We see that the eruption of Eyjafjalljokull increased the number of earthquakes in Myrdalsjökull but not to the extent that the eruption of Barðarbunga at the Holuhraun fissure and subsidence in the caldera pushed up the earthquakes for Vatnajökull in 2014 and subsequent years. In fact, the total number of earthquakes in all regions, except Myrdalsjökull, has remained elevated since Holuhraun.
Our database does not extend back far enough to draw any firm conclusions, however, it would appear that rifting events such as Holuhraun produce far more earthquakes than volcanic activity on its own.
Tjörnes Fracture Zone and on the Reykjanes Peninsula
This rather begs the question as to what is happening this year with the large earthquake swarms both in the Tjörnes Fracture Zone and on the Reykjanes Peninsula. Unless our database does not go back far enough, neither the 2011 Grímsvötn nor the 2014 Barðarbunga eruption was preceded by such large earthquake swarms in other regions.
The fact that there is significantly raised activity this year in both regions suggests to us that we may be witnessing the normal plate separation on the Mid Atlantic Ridge (it is not entirely smooth), possible local magma ascent, and / or the plates accommodating an ascending blob of magma from the mantle plume, which is believed to be under the Vatnajökull icecap. There is ground deformation at several spots under the Vatnajökull icecap which points to magma ascent.
IMO have reported that there could be a magmatic intrusion at depth on the Reykjanes Peninsula; this is supported by ground deformation.
Gas measurements, ground deformation and recent seismic activity at Grímsvötn (not enough to show in our graphs but above the background levels for the volcanic system) have led to the Icelandic authorities to consider that an eruption is possible there in the not too distant future and to raise the alert level a notch (see earlier article).
It is too soon to tell whether or not the rifting events, themselves, will result in eruption(s); it is possible that it is just a coincidence that we are seeing two large rifting events at roughly the same time – both areas are seismically active. Time will tell.
The Icelandic Met Office (IMO) has updated the aviation alert for Grímsvötn from green to yellow today (30.09.2020) because the volcano’s activity is above background level, now at a level comparable to that which preceded previous eruptions. They note:
Above average seismicity for September 2020;
Deepening cauldrons in the ice-cap round the caldera from geothermal activity;
Surface deformation exceeding that which preceded the 2011 eruption;
Magmatic gases detected in the summer of 2020.
An eruption is not considered imminent.
Water levels in the sub-glacial lake are high indicating possible jökulhlaups in the coming months. Draining of the lake by a jökulhlaup depressurised the system before the 2011 eruption, so an eruption is considered possible in the event of a jökulhlaup.
Activity may decrease without an eruption in this instance; only time will tell.
Jumping the gun a bit on our next post in the volcanic risk mitigation series, the IMO’s alert is an example of using alert levels to highlight the increased risk of an eruption to those who need to know, without being unduly alarmist – a straightforward statement of the facts supporting the current status. For the exact wording of the alert, please follow the link below.
Fig 1: Eruption column 3 hours after the onset of the 2011 eruption of Grímsvötn. Source: Sigurjónsson, O. (2011 May 21). Grímsvötn: photo 10 of 14. Retrieved from http://icelandicvolcanoes.is/?volcano=GRV
Grímsvötn is located under the Vatnajökull ice-cap in an active rift zone of the Eastern Volcanic Zone, Iceland. She erupts frequently; her last in 2011 was a large VEI 4, which impacted local farmers and livestock and aviation in Europe.
Update (02/10/2020)
Googling around a bit more, I note that Iceland’s Department of Civil Protection and Emergency Management, Almannavarnir, have reported in their 25 September 2020 bulletin that an eruption is considered likely this Autumn (use Google Translate or other tool, if you need to, as it is in Icelandic).
Fig 1: Barðarbunga: cropped image from photo 3 of 11 by Erik Sturkell, retrieved from Icelandic Volcanoes
In this post we continue our journey round Iceland’s many volcanoes. We have reached the mighty Barðarbunga at the northwest corner of the Vatnajökull icecap.
Barðarbunga volcanic system lies in the Eastern Volcanic Zone, Iceland, near where the head of the mantle plume is thought to be. The system comprises a 2,000 m high central stratovolcano with a 65 km2, 700 m deep caldera, the Veiðivötn fissure swarm running NE to SW, and the Tröllagigar and the Dyngjuháls – Holuhraun fissure swarms running NE; the entire system is c. 190 km long and 25 km wide.
There is second central volcano in the system, Hamarinn, 20 km south west of the Barðarbunga central volcano. Hamarinn may be younger, indicated by the absence of both an intrusive complex and a caldera.
There are geothermal areas near the caldera rim of Barðarbunga and the east of Hamarinn, the latter is the source of jökulhlaups.
Fig 2: Map of the Barðarbunga volcanic system:central volcanoes, fissure systems and lava flows. Green barred squares indicate the locations of various volcanoes; BAR is Barðarbunga. Retrieved from Icelandic Volcanoes. See Sources for full accreditation.
The area is tectonically very active: the Eastern Volcanic Belt accommodates much of the separation between the North American and Eurasian Plates. The area is close to the junction with the Northern Volcanic Zone, where Barðarbunga’s neighbours, Askja and Herðubreið, can be found.
Eruptive History
According to GVP, there are 55 identifiable Holocene eruptive periods for the Barðarbunga system. Some of the eruptive history has been hidden by the ice-cap. However, lavas and tephra deposits on the ice-free sections of the fissures are more accessible.
Barðarbunga Central Volcano
The central volcano has had around 22 eruptions in the last 1000 years, most occurring between 1200 -1500 and in the 18th century. The last known subaerial eruption was in 1910.
Barðarbunga’s lavas are mainly basalt/ picro basalt. Her eruption types are explosive, phreato-magmatic with jökulhlaups, reflecting the impact of the ice-cap. The central volcano produces eruptions in the order of VEI 3 to 4, producing tephra – both airborne and waterborne. There is a silicic tephra layer in the ice-cap dating to the early 18th century but it is not clear that this came from Barðarbunga. If it did, any rhyolite would have come from partial melting of the basaltic crust.
Magma is sourced from a depth of 10 km or more below the caldera; above this source is an intrusive complex and a lower density region, probably of caldera in-fill. Magma may also be sourced direct from the mantle in the fissure swarms.
Fissure Swarms
Fissure swarm eruptions are basaltic in the order of VEI 1 to 2, with a maximum of VEI 6 on the Veiðivötn fissure.
The last three eruptions on the south west fissure swarm were the VEI 4 at Vatnaöldur in 877, the VEI 6 at Veiðivötn in 1477 and the VEI 2 at Tröllagigar in 1862-1864. The first two of these were explosive tephra eruptions, producing 5 km3 to 10 km3 of tephra and small lava flows. Both the Vatnaöldur and Veiðivötn fissures cut into the Torfajökull volcano, causing it to erupt with silicic tephra and lava. The largest known effusive eruption on the SW fissure swarm is the Great Þjórsá lava which covers 900 km2 and reached the south coast via the Tungnaá and Þjórsá river valleys.
The Gjálp eruption in 1996 occurred on a subglacial fissure that links the Barðarbunga and Grímsvötn volcanic systems. While it is thought that the magma was sourced from beneath Barðarbunga, based on seismic and geodetic data, the magma erupted subaerially was characteristic of Grímsvötn’s lavas.
The frequency of eruptions on the northern fissure swarm is not known; the last eruption was at Holuhraun which started on 29 August 2014 and lasted until February 2015. Precursors to this eruption were a build up of seismic activity at Barðarbunga over seven years, which stopped immediately after the Grímsvötn 2011 eruption but resumed soon afterwards. The largest known effusive fissure eruption north of Vatnajökull is the mid Holocene 15 km3 Trölladyngja lava shield.
Holuhraun Eruption 2014 – 2015
Fig 3: Holuhraun eruption. Cropped image from Barðarbunga: photo 8 of 11 by Alessandro La Spina, 4 September 2014. Retrieved from Icelandic Volcanoes. Note the fire fountains, spatter cones and volcanic gases.
The subaerial eruption started on 29 August 2014 at the Holuhruan vent 45 km NE of the Barðarbunga caldera; the eruption ended on 28 February 2015, having left an 85 km2 lava field and a 65 m deep depression in the Barðarbunga caldera’s ice cover. The eruption was a large SO2 and other volcanic gas producer, however there was little ash or tephra.
The central volcano, Barðarbunga had inflated prior to the eruption then deflated during the eruption as evidenced by subsidence in the ice covering. The volume of the subsidence was consistent with the dyke intrusion and the lava erupted at Holuraun, although there is seismic and geochemical evidence that some of the lava erupted at Holuhraun was fed direct from the mantle. It is estimated that 1.6 km3 lava was erupted.
Since September 2015, seismic and GPS data show that the volcano has started to refill at a depth of 10 to 15 km.
Recent Seismic Activity
We looked at earthquakes in the Barðarbunga, Askja, Herðubreið and Holuhraun area (64.56°N, 17.65°W to 65.3°N, 16.1°W) for the period 1 January 2009 to 28 June 2020. Not much activity had been noted in the area to the west and south west of Barðarbunga in our earlier plots; however, we had noted that heightened activity at Askja and Herðubreið had preceded the 2014 eruption at Holuhraun which lies between the three volcanoes, hence we included them in our plots. The link between the centres is rifting in the crust to accommodate the separation of the North American and Eurasian Plates.
There were 70,128 earthquakes in the period, of which 16,573 occurred before the 2014 -2015 eruption, 19,061 during the eruption and 34,494 post eruption; the average per calendar month was 247 pre eruption, 2,723 during the eruption and 539 post eruption; the maximum magnitude earthquake pre eruption was 3.9 M, during the eruption 5.5 M and 4.9 M post eruption; and, the deepest quakes had respective depths of 33.9 km, 31.0 km and 33.9 km. These numbers include activity at Barðarbunga, itself, the Holuhraun fissure, Askja and Herðubreið. The larger magnitude earthquakes occurred near the north and south caldera rim during the eruption. Since the eruption all four centres have had elevated seismic activity.
Seismicity during the 2014 to 2015 Holuhraun eruption
Three months prior to the eruption, there was an earthquake swarm at Herðubreið, noted here because the rifting event that preceded the Holuhraun eruption occurred on the same plate boundary. Seismic activity at Herðubreið or Askja may be precursors to activity at Vatnajökull, if they, themselves, are not the main event or brewing something. Something to watch out for bearing in mind the recent large swarms in the Tjörnes Fracture Zone and on the Reykjanes Peninsula.
The earthquake plots for August 2014 and November 2014 show the intense swarms from caldera collapse and also the rifting event.
We will look at Askja and Herðubreið in future posts.
“Barðarbunga”, Guðrún Larsen and Magnús T. Guðmundsson (Institute of Earth Sciences – Nordvulk, University of Iceland). In: Oladottir, B., Larsen, G. & Guðmundsson, M.T., Catalogue of Icelandic Volcanoes. IMO, UI and CPD-NCIP. Retrieved from Icelandic Volcanoes: http://icelandicvolcanos.is/?volcano=BAR
Fig 2: Map. After Björnsson (1988), Gudmundsson and Högnadöttir (2007), Jóhanneson and Saemundsson (1998a & b), Sigurgeirsson et al (2015). Base data, Iceland Geo Survey, IMO, NLSI | Base map: IMO. In: Oladottir, B., Larsen, G. & Guðmundsson, M.T., Catalogue of Icelandic Volcanoes. IMO, UI and CPD-NCIP. Retrieved from Icelandic Volcanoes: http://icelandicvolcanos.is/?volcano=BAR
Smithsonian Institution Natural History Museum Global Volcanism Program (GVP): https://volcano.si.edu
While browsing IMO’s website a few days ago, I saw that signs have been detected that Grímsvötn is getting ready for another eruption, IMO ; a team of scientists noted large sulphur dioxide emissions near the south west caldera rim, indicating that magma is close to the surface. At the time of writing, the alert level for Grímsvötn remains at green.
Grímsvötn is Iceland’s most active volcano, erupting every 10 years and last erupting in 2011 with a VEI 4.
Fig 1 Grimsvotn 2011 eruption. Photographer: Sigurjónsson,O. Grímsvötn (GRV): photo 2 of 14. Retrieved from Icelandic Volcanoes: http://icelandicvolcanos.is/?volcano=GRV
Geological Setting
Grímsvötn is one of six active volcanoes under the Vatnajökull ice cap: Bárðarbunga, Kverkfjöll, Grímsvötn, Esufjöll, Þórðarhyrna, Öræfajökull. Apart from Þórðarhyrna (THO in the map below), the other volcanoes are different volcanic systems.
The Vatnajökull volcanoes are part of the Eastern Volcanic Zone in Iceland. Volcanism here is caused by rifting and extension from the separation of the North American and Eurasian Plates. As noted in an earlier post, the Eastern Volcanic Zone accommodates 40 to 100% of the separation.
Our description of the Grímsvötn volcanic system is largely based on Magnús T. Guðmundsson and Guðrún Larsen’s description in Icelandic Volcanoes (ref. Sources below for the full accreditation).
The Grímsvötn volcanic system
The Grímsvötn volcanic system, itself, is made up of two central volcanos and fissure swarms. It is partly covered by ice.
Fig 2 The Grímsvötn volcanic system showing craters, central volcanoes and fissure swarms. Retrieved from Icelandic Volcanoes (see Sources below for full accreditation).
The Central Volcanoes
The Grímsvötn central volcano is a 1722m high, 15-16km diameter caldera complex covered by the Vatnajökull ice-cap, with ice depths of 100m to 700m; she has an 8km by 10km ice-filled caldera. Grímsfall (GFUM) is the highest point on the caldera rim. There is a subglacial lake in the caldera under a 200 – 300m ice shelf with an associated geothermal area. The lake has been the source of many jökulhlaups.
The Þórðarhyrna central volcano, also subglacial, is a 1650 high with a 15 km diameter, connected to Grímsvötn by a subglacial ridge. The volcano, itself, has a small intrusive complex but does not appear to have a large magma reservoir. There is a geothermal area near Pálsfjall.
Ice cover has restricted study of the volcanoes. However, Grímsvötn has been around for long enough to develop a caldera – possibly more than 100,000 years.
Grímsvötn’s lava types are tholeiitic basalt with basaltic andesite and dacite / rhyolitic outcrops in the Þórðarhyrna central volcano. The presence of a shallow magma reservoir is inferred from the geothermal field in the caldera. The 2011 eruption of Grímsvötn produced 0.8km3 basaltic tephra.
Þórðarhyrna is less active than her neighbour; the last eruption occurred in 1903 with a VEI 4. It is possible that she had a second eruption in 1753, resulting in jökulhlaups. Again, ice cover has limited geological study. There is little seismic activity near Þórðarhyrna.
The Fissure Swarms
The fissure swarm is about 100 km long and 18 km wide. Rifting is believed to occur along the entire swarm. The northern end of the fissure swarm is covered by the Vatnajökull ice-cap; the southern 80km is ice-free. Subglacial ridges characterise the northern end of the fissure, but not the ice-free southern end where crater rows delineate the fissure, including the Laki.
Three known subglacial eruptions have occurred since 1867 at Gjálp 10km to 15km north of Grímsvötn, itself. The eruptive products include subglacial ridges and some airborne tephra. The 1996 eruption produced basaltic andesite.
Four effusive eruptions have been identified in the ice-free section of the fissure swarm southwest of Grímsvötn in the last 8,000 years; lava volumes have been between 1 km3 to 14 km3 with up to 0.7km3 of tephra. The largest fissure eruption was the Laki eruption in 1783 to 1784. No eruptions have been identified for the ice-covered section of the fissure swarm.
The Laki Fissure Eruption 1783 -1784
This eruption was well documented at the time; the Reverend Jón Steingrímsson’s 1788 account in “A complete description of the Síða Fires” gives a detailed eye-witness account.
The 1783 eruption occurred on 27km long fissure and lasted from 8 June 1783 to 7 February 1784. The early phase consisted of a series of ten or more explosive tephra events, each followed by effusive lava flows. Grímsvötn, itself, erupted in July 1783 to May 1785 causing ash fall and jökulhlaups.
The Laki eruption was pre-empted by earthquakes of increasing intensity from mid-May to 8 June 1783 when a large ash cloud and ash fall appeared, followed by lava columns over 1km high from new fissure to the north. Volcanic gases filtered out sunlight, making the Sun appear red. Accompanying rainfall was acidic, irritating people’s eyes and skin. Lava flows filled river gorges, overflowing to cover surrounding farmland. During the eruption, Mount Laki was destroyed; I am not sure how big she was and how much her destruction contributed to the vast tephra output.
The eruption is rated a VEI4, having produced 0.7km3 of tephra which covered more than 8,000 km2, and 14 km3 of lava. Volcanic gases, including fluorine, killed more than half of the livestock and the “Haze Famine” killed 20% of the Icelandic population. Further afield, 100 million tonnes of sulphur dioxide, having reached the jet stream, spread acidic sulphate aerosols round the Northern Hemisphere, damaged vegetation and crops in Europe and Alaska, caused severe winters and annual cooling of around 1.3°C that lasted for two to three years.
Fig 3: Laki Crater Row: Photographer: Sigurðsson, O. Grímsvötn (GRV): photo 1 of 14. Retrieved from Retrieved from Icelandic Volcanoes: http://icelandicvolcanos.is/?volcano=GRV
According to GVP, the Grímsvötn volcanic system has had 86 Holocene eruptions ranging from VEI 0 to VEI 6. The VEI 6 occurred around 10200 BP and is the thought to be the source of the Saksunarvatn Tephra, a basaltic tephra which covered an area of 2 million km2 around the North Atlantic. The Saksunarvatn Tephra, like the Vedde Ash from Hekla, is a geological time marker, although radiocarbon dating of the Saksunarvatn Tephra shows that it may have come from seven eruptive events over a 500 year period from 10400 BP to 9900 BP
Grímsvötn’s most recent eruptions from 1996 to 2011 range from VEI 3 to VEI 4. They were preceded by a small increase in seismicity and small earthquake swarms, except for the 1996 Gjálp eruption. The 1996 eruption was preceded by a 5.4 earthquake on Barðabunga’s northern caldera rim, swarms over a two day period at Barðarbunga’s north and northwest caldera rims and at Grimsvotn’s southern caldera rim, followed by a swarm from the north Bardarbunga caldera rim that migrated to Gjálp.
Recent Seismicity
So, what does our earthquake data set tell us about the likelihood of an eruption at Grímsvötn? The answer is a disappointing “not a lot”. We can see that Grímsvötn has a fairly steady stream of earthquakes but no obvious swarms. However, given the proximity of Grímsvötn to other volcanoes, we may have attributed some of Grímsvötn’s activity to another volcano in error. Plots are shown below, including one for Vatnajökull which shows the problem.
The earthquake plots of the Vatnajökull region show the SW-NE trending fissure swarms and also a SE-NW trending line of earthquakes. The head of the mantle plume is considered to be under the Vatnajökull ice-cap; perhaps we are seeing its influence on the plate junction? We can also see the proximity of Grímsvötn to Bárðarbunga.
The Grímsvötn system, with 3,326 earthquakes, is not the most seismically active volcano; activity is overshadowed by seismic activity at Bárðarbunga (5,464 earthquakes), Askja and Herðubreið (a combined 15,645 earthquakes) and Öræfajökull (4,770 earthquakes). The 2014 eruption of Holuhraun was both preceded and accompanied by intense seismic activity at Bárðarbunga, notably near the edges of the caldera, and deflation at Bárðarbunga. Since the eruption, Bárðarbunga has started to re-inflate. Our data set starts a year or more after the end of that eruption.
Looking more closely at Grímsvötn we see that earthquake activity is focused on the south east of the caldera and at an E-W trending fissure to the north east of the volcano. The E-W fissure is parallel to similar lines of activity further north at Bárðarbunga’s caldera. We also picked up some activity at Þórðarhyrna.
The earthquakes are telling only part of the story. Grímsvötn has had a steady stream of earthquake activity during the period, but without the SO2 measurements from scientists, we would not be certain that magma, itself, was near the surface.
For updates on Grímsvötn, please visit IMO’s website (details below).
The Armchair Volcanologist
22 June 2020
Sources and Further Reading
“Grímsvötn”, Magnús T. Guðmundsson and Guðrún Larsen (Institute of Earth Sciences – Nordvulk, University of Iceland) In: Oladottir, B., Larsen, G. & Guðmundsson, M.T., Catalogue of Icelandic Volcanoes. IMO, UI and CPD-NCIP. Retrieved from Icelandic Volcanoes: http://icelandicvolcanos.is/?volcano=GRV
“Þórðarhyrna”, Magnús T. Guðmundsson and Guðrún Larsen (Institute of Earth Sciences – Nordvulk, University of Iceland) In: Oladottir, B., Larsen, G. & Guðmundsson, M.T., Catalogue of Icelandic Volcanoes. IMO, UI and CPD-NCIP. Retrieved from Icelandic Volcanoes: http://icelandicvolcanos.is/?volcano=THO
Fig 2: Map: After Guðmundsson and Miller (1997), Guðmundsson et al (2013a), Jóhannesson and Sæmundsson (1998a), Jóhannesson et al (1990). Base data, Iceland Geo Survey, IMO, NLSI | Base map: IMO. In: Oladottir, B., Larsen, G. & Guðmundsson, M.T., Catalogue of Icelandic Volcanoes. IMO, UI and CPD-NCIP. Retrieved from Icelandic Volcanoes: http://icelandicvolcanos.is/?volcano=GRV
Smithsonian Institution Natural History Museum Global Volcanism Program (GVP): https://volcano.si.edu